Indian Statistical Institute, Bangalore Centre J.R.F. (I Year) : 2016-2017 Semester I : Supplementary Examination Analysis - I

26.12.2016 Time: 3 hours. Maximum Marks : 60

Note: Notation and terminology are understood to be as used in class. State clearly the results you are using in your answers.

1. $(3 \times 5 = 15 \text{ marks})$ Prove or disprove:

(i) Let $\Omega = \{1, 2, 3, \dots\}$, \mathcal{B} = power set of Ω , and $\mu(E) = |E|$. Then convergence in μ -measure is equivalent to uniform convergence.

(ii) Let $(\Omega, \mathcal{B}, \mu)$ be a σ -finite measure space. Suppose $f_n \to f$ in $L^p(\mu)$, and $g_n \to g$ in $L^q(\mu)$; here (1/p) + (1/q) = 1. Then $f_n g_n \to fg$ in $L^1(\mu)$.

(iii) Let μ denote the Lebesgue measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. If $f \in L^{\infty}(\mu)$, then $|| f_x - f ||_{\infty} \to 0$ as $x \to 0$; here f_x is defined by $f_x(y) = f(x + y), y \in \mathbb{R}$.

2. (10 marks) Let $0 < a, b < \infty$. Define

$$f(x) = x^{a-1}(1-x)^{b-1}, \ 0 < x < 1.$$

Show that $f(\cdot)$ is Lebesgue integrable on (0, 1).

3. (15 marks) Let λ be a signed measure on a measurable space Ω, \mathcal{B}). Let $\lambda = \lambda^+ - \lambda^-$ be its Jordan decomposition. For any $E \in \mathcal{B}$, show that

$$\lambda^{+}(E) = \sup\{\lambda(F) : F \subset E, F \in \mathcal{B}\},\$$

$$\lambda^{-}(E) = -\inf\{\lambda(F) : F \subset E, F \in \mathcal{B}\}$$

4. (3 + 7 = 10 marks) Let 1 , and <math>q = p/(p-1). Let $g \in L^q(\Omega, \mathcal{B}, \mu)$, where μ is a σ -finite measure. Define $G : L^p(\Omega, \mathcal{B}, \mu) \to \mathbb{R}$ by

$$G(f) = \int_{\Omega} f(\omega)g(\omega)d\mu(\omega), \quad f \in L^{p}(\mu).$$

- (i) Show that G is a bounded linear functional on $L^p(\Omega, \mathcal{B}, \mu)$.
- (ii) Find $\parallel G \parallel$.

5. (4 + 6 = 10 marks) Let f, g be nonnegative Borel measurable functions on \mathbb{R} ; suppose f, g are also integrable with respect to the Lebesgue measure.

(i) Show that the function $(x, y) \mapsto f(x - y)g(y)$ is Borel measurable on \mathbb{R}^2 .

(ii) Show that $f\ast g$ is integrable with respect to the Lebesgue measure and find $\parallel f\ast g\parallel_1$.